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Abstract
A systematical investigation into the transient and stationary transport properties of a circularly
coupled triple quantum-dot system including three subrings has been carried out using the
modified rate equations. It is shown that both the electron-occupation probabilities and the
current flowing through the triple quantum-dot structure exhibit transient oscillations in the
initial stage of the quantum dynamics and eventually evolve into stationary values. Furthermore,
the influences on the stationary current caused by the magnetic field and the interdot Coulomb
interaction are taken into account. It is demonstrated that with a variation of the magnetic flux
the current shows the 2(1 + n1 + n2)π -period Aharonov–Bohm oscillation with 1:n1:n2 being
the ratio of the magnetic fluxes penetrating three subrings φ, n1φ, and n2φ. Moreover, although
the interdot Coulomb interactions have an obvious effect upon specific oscillation behaviors,
they are not able to change the oscillation period. Lastly, together with the results of the
one-ring and two-subring structures, we extend the three-subring result into an N-subring case.
It is verified that the Aharonov–Bohm oscillation period of the stationary current is
2(1 + n1 + · · · + nN−1)π when the ratio of the reduced magnetic flux threading into the N
subrings is 1:n1: · · · :nN−1.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum transport through artificial semiconductor quantum
dots (QDs) has been extensively investigated in numerous
publications [1–5]. Based on the Aharonov–Bohm (AB) QD
interferometer, the coherence of the electron through a QD
has already attracted considerable attention [6–10]. Using
the AB interferometer with only one arm having an inserted
QD, the electron transmission phase and the ‘which-way’
detector-induced dephasing were studied extensively. Then in
another typical kind of AB interferometer with a QD inserted
in each arm, the AB oscillation and the coherently coupled
states have also been studied both experimentally [11, 12]
and theoretically [13–16]. Very recently, much attention has
been paid to the transport properties of a triple QD (TQD)
system [17–24]. Žitko et al [17] determined the range of
the hopping parameters where the system exhibits the two-

channel Kondo effect. Jiang et al [19] studied theoretically
the equilibrium and non-equilibrium Kondo properties of the
serially coupled TQDs. Theoretically and experimentally,
Korkusinski et al [20] analyzed the electronic structure and the
charging diagram of the laterally coupled TQD. Clearly these
studies indicate the three-QD or even many-QD structures are
of particular interest in some aspects. However, all the above
studies carried out on the TQD systems did not consider the
quantum transient dynamics.

In this paper, we design a new kind of circularly coupled
TQD setup (see the inset of figure 1) to investigate the transient
and stationary transport properties. Obviously, three subrings
exist in this TQD system, which will be called the left, middle,
and right subrings for convenience. The magnetic fluxes
penetrating these three subrings can be expressed as �L, �M,
and �R, respectively. It should be emphasized that this study
on the versatile TQD system including three subrings can
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Figure 1. Time-dependent evolution of the current flowing from the
left lead to the right one for different � in the absence of the magnetic
field and the interdot Coulomb interaction. Here the interdot
coupling is chosen to be �0 = 1.0 and the time t is in units of 1/�0.
The top-right inset shows the TQD setup studied in this paper.

also be viewed as an important starting point on the way to
understanding the many-subring AB oscillation phenomena.
In certain cases this TQD setup can also be simplified into
a particular AB interferometer with one QD inserted in one
arm and two QDs in the other one, sharply different from
the usually studied AB interferometer. First of all, we derive
the modified rate equations and the corresponding current
of the TQD system. Then we numerically study the time-
dependent evolution of the electron-occupation probabilities
and the current. Also, we explore the influences of the interdot
Coulomb interaction and the magnetic field. It is shown that in
the initial stage the current and the probabilities show transient
oscillations and eventually evolve into constants. Furthermore,
it is found that the current shows AB-type periodical oscillation
with the variation of the applied magnetic flux. Finally, we
obtain a general relation between the current oscillation period
and the magnetic field for the N-subring structure. This study
should be beneficial to understanding the transport properties
in this kind of structure.

The rest of this paper is organized as follows. In section 2,
we present the Hamiltonian and derive the modified rate
equation for the entire system. Then we analyze, in section 3,
the transport properties of the TQD structure. Finally, a brief
conclusion is given in section 4.

2. Model and formulae

The Hamiltonian of the entire system including three QDs
and two leads can be written in the occupation number
representation as H = HL + HD + HT with3

HL =
∑

l

εla
†
l al +

∑

r

εr a†
r ar , (1a)

3 Usually the intradot interaction is larger than the interdot one. Here, we
consider the large bias regime with μL � Ei � μR andμL � Ei +Ui � μR

with the intradot Coulomb interaction Ui and i = 1, 2, 3 being the QD index.
In this case, the double occupancy in each QD is allowed, weakening the
influences of Ui . However, when the interdot interaction U0 exists, we select
Ei + Ui + U0 � μL � μR, which will forbid the double occupancy in the
corresponding QDs. Therefore, we can omit the intradot Coulomb interaction
from the Hamiltonian and just keep the interdot interaction.

HD =
3∑

α=1

εαa†
αaα +

3∑

α<β

(�αβa†
αaβ + h.c.)+

3∑

α<β

Uαβnαnβ,

(1b)

HT =
2∑

α=1

∑

l

tαl a
†
αal +

3∑

β=2

∑

r

tβr a†
βar + h.c. (1c)

Here HL represents the noninteracting electron Hamiltonian
of the two leads with a†

l and al (a†
r and ar ) being the

corresponding creation and annihilation operators at energy
level εl(εr ) for the electrons in the left (right) lead, respectively.
The Hamiltonian of the three QDs can be described by HD,
where a†

α (aα) represents the creation (annihilation) operator
of the electron at energy level εα and nα ≡ a†

αaα is the particle
number operator. �αβ represents the interdot coupling between
QDs α and β , and Uαβ is the corresponding interdot Coulomb
interaction. HT denotes the tunneling coupling between the
QDs and the two leads, where tαl stands for the hopping
amplitude between QD-α (α = 1, 2) and the left lead, and
tβr is that between QD-β (β = 2, 3) and the right lead.

Following the procedure initially proposed by Gurvitz and
Prager [25, 26], the state of the whole system can be described
by the many-body wavefunction in the occupation number
representation as

|ψ(t)〉 =
[

b0(t)+
∑

α,l

bαl(t)a
†
αal +

∑

α<β

∑

l<l′
bαβll′ (t)a

†
αa†
βalal′

+
∑

l<l′<l′′
ball′l′′ (t)a

†
1a†

2a†
3alal′ al′′ + · · ·

]
|0〉. (2)

Here, |0〉 denotes a ‘vacuum’ state, in which three QDs are kept
empty and all the levels in the left and right leads are initially
filled with electrons up to the Fermi energy levels μL and μR,
respectively. This study is performed in the large bias (μL �
E1,2,3 � μR with μL = −μR → ∞) case. b···(t) are the
time-dependent probability amplitudes of finding the system
in the corresponding states. The quantum evolution of the
whole system is described by the time-dependent Schrödinger
equation i ˙|ψ(t)〉 = H |ψ(t)〉. In the eight-dimensional Fock
space, consisting of states |0〉 (all QD levels are empty), |α〉
(only Eα is occupied), |ᾱ〉 (only Eα is empty), and |a〉 (all QD
levels are occupied), one can obtain the following Bloch-type
rate equations for the diagonal elements of the density matrix
σ
(n)
kk (t)(k = 0, 1, 2, 3, 1̄, 2̄, 3̄, a) as

σ̇ n
00 = −(�L1 + �L2)σ

n
00 + �R2σ

n−1
22 + �R3σ

n−1
33

+ 2 Re(�R�Rσ
n−1
23 ), (3a)

σ̇ n
11 = �L1σ

n
00 − �12

L2σ
n
11 + �R3σ

n−1
2̄2̄

+ �R2σ
n−1
3̄3̄

+ Re(2�R�Rσ
n−1
3̄2̄

− �12
L �Lσ

n
12)

− 2 Im(�21σ
n
12 +�31σ

n
13), (3b)

σ̇ n
22 = �L2σ

n
00 + �R3σ

n−1
1̄1̄

− (�12
L1 + �R2)σ

n
22

− Re(�12
L �Lσ

n
12 + �R�Rσ

n
23)

− 2 Im(�12σ
n
21 +�32σ

n
23), (3c)

σ̇ n
33 = �R2σ

n−1
1̄1̄

− (�13
L1 + �23

L2 + �R3)σ
n
33

− Re(�R�Rσ
n
23)− 2 Im(�23σ

n
32 +�13σ

n
31), (3d)

2
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σ̇ n
1̄1̄

= −(�a
L1 + �R2 + �R3)σ

n
1̄1̄

+ �23
L2σ

n
33

− Re(�a
L�Lσ

n
2̄1̄
)− 2 Im(�13σ

n
1̄3̄

+�12σ
n
1̄2̄
), (3e)

σ̇ n
2̄2̄

= −(�R3 + �a
L2)σ

n
2̄2̄

+ �13
L1σ

n
3̄3̄

+ �13
R2σ

n−1
aa

− Re(�R�Rσ
n
3̄2̄

+ �a
L�Lσ

n
2̄1̄
)− 2 Im(�21σ

n
2̄1̄

+ �23σ
n
2̄3̄
), (3 f )

σ̇ n
3̄3̄

= �12
L2σ

n
11 + �12

L1σ
n
22 − �R2σ

n
3̄3̄

+ �12
R3σ

n−1
aa

+ Re(�12
L �Lσ

n
12 + �R�Rσ

n
3̄2̄
)− 2 Im(�31σ

n
3̄1̄

+ �32σ
n
3̄2̄
), (3g)

σ̇ n
aa = �a

L1σ
n
1̄1̄

+ �a
L2σ

n
2̄2̄

− (�13
R2 + �12

R3)σ
n
aa

+ 2 Re(�a
L�Lσ

n
2̄1̄
). (3h)

The non-diagonal elements of the density matrix σ n
kk′ (t) can be

written as

σ̇ n
12 = −[�12

L1 + �12
L2 + �R2]σ n

12/2 + �R3σ
n−1
2̄1̄

+ �L�
∗
Lσ

n
00

+ �R�R[σ n−1
3̄1̄

− σ n
13/2] − �12

L �
∗
L[σ n

11 + σ n
22]/2

+ i[�12(σ
n
11 − σ n

22)+�32σ
n
13 −�13σ

n
32], (4a)

σ̇ n
13 = −[�R3 + �23

L2 + �13
L1 + �12

L2]σ n
13/2 + �R2σ

n−1
3̄1̄

+ �R�
∗
R[σ n−1

2̄1̄
− σ n

12/2] + �12
L �

∗
Lσ

n
23/2

+ i[�13(σ
n
11 − σ n

33)−�12σ
n
23 +�23σ

n
12], (4b)

σ̇ n
23 = �R�

∗
Rσ

n
1̄1̄

− [�13
L1 + �23

L2 + �12
L1 + �R2 + �R3]σ n

23/2

− �R�
∗
R[σ n

22 + σ n
33]/2 − �12

L �Lσ
n
13/2

+ i[�23(σ
n
22 − σ n

33)+�13σ
n
21 −�21σ

n
13], (4c)

σ̇ n
1̄2̄

= [�23
L + �13

L ]�Lσ
n
33 − [2�R3 + �a

L1 + �a
L2 + �R2]σ n

1̄2̄
/2

− �a
L�L[σ n

1̄1̄
+ σ n

2̄2̄
]/2 − �R�

∗
Rσ

n
1̄3̄
/2

+ i[�21(σ
n
1̄1̄

− σ n
2̄2̄
)+�23σ

n
1̄3̄

−�31σ
n
3̄2̄

]
+ i(U13 − U23)σ

n
1̄2̄
, (4d)

σ̇ n
1̄3̄

= [�23
L2 + �12

L2]σ n
31/2 − [2�R2 + �a

L1 + �R3]σ n
1̄3̄
/2

+ [�23
L + �12

L ]�Lσ
n
32/2 − �a

L�Lσ
n
2̄3̄
/2 − �R�Rσ

n
1̄2̄
/2

+ i[�31(σ
n
1̄1̄

− σ n
3̄3̄
)+�32σ

n
1̄2̄

−�21σ
n
2̄3̄

]
+ i(U12 − U23)σ

n
1̄3̄
, (4e)

σ̇ n
2̄3̄

= −[�a
L2 + �R2 + �R3]σ n

2̄3̄
/2 + [�13

L1 + �12
L1]σ n

32/2

− �a
L�

∗
Lσ

n
1̄3̄
/2 + [�13

L + �12
L ]�∗

Lσ
n
31/2

− �R�R[σ n
2̄2̄

+ σ n
3̄3̄

]/2
+ i[�32(σ

n
2̄2̄

− σ n
3̄3̄
)+�31σ

n
2̄1̄

−�12σ
n
1̄3̄

]
+ i(U12 − U13)σ

n
2̄3̄
. (4 f )

The other non-diagonal elements can be obtained according
to the simple relation σkk′ = σ ∗

k′k . Here, we assume equal
QD energy levels ε1 = ε2 = ε3 ≡ ε0, and the index n
denotes the electron number found in the right lead. The energy
level bandwidths are defined as �L1(2) = 2πρL(E1)|t1(2)l|2 and
�R2(3) = 2πρR(E2)|t2(3)r |2 with ρL(R) denoting the density
of states in the left (right) lead, which represent the rates
of electron transitions from the left lead to QD-1(2) and
out of QD-2(3) to the right lead, respectively. Considering
the interdot Coulomb interactions (U12, U13, and U23), we
define some new parameters �13

R2(E1 + U13), �12
R3(E1 + U12),

�12
L1(E1 +U12), �12

L2(E1 +U12), �13
L1(E1 +U13), �23

L2(E1 +U23),
�a

L1(E1 +Ua), and �a
L2(E1 +Ua) with Ua = U12 +U13 +U23.

For simplicity, we also define �12
L = (�12

L1�
12
L2)

1/2, �23
L =

(�23
L1�

23
L2)

1/2, �a
L = (�a

L1�
a
L2)

1/2, �R = (�R2�R3)
1/2, �L =

exp[i(θL1 + θ2L)], and �R = exp[i(θR2 + θ3R)]. Moreover,
�αβ = |�αβ | exp(iθαβ) is defined in this way to include the
influences of the magnetic field, where θL1, θ2L, θR2, θ3R, θ12,
θ13, and θ23 stand for the corresponding phases caused by the
magnetic field. Finally, according to equation (3) we can derive
the current flowing through the system as [25]

I (t)/e = ṄR(t) =
∑

n

n
∑

k

σ̇ n
kk(t)

= �R2(σ1̄1̄ + σ22 + σ3̄3̄)+ �R3(σ1̄1̄ + σ2̄2̄ + σ33)

+ (�12
R3 + �13

R2)σaa + 2 Re[�R�R(σ23 + σ3̄2̄)]. (5)

Clearly, the current depends on both the diagonal and non-
diagonal density elements.

3. Results and discussion

In what follows, we study the transport properties of the
circularly coupled TQD system numerically. For simplicity, we
mainly focus on the symmetrical structure with �L1 = �L2 =
�R2 = �R3 ≡ � and the energy level ε0 = 0. Generally,
the interdot couplings are chosen to be �12 = �13 = �23 ≡
�0 = 1 as the energy unit. We firstly consider the transient and
stationary transport properties of the TQD system, and then
the influences of the externally applied magnetic field and the
interdot Coulomb interaction.

3.1. Transient transport

To begin with, we investigate the transient dynamics of the
TQD system in the absence of the magnetic field and the
interdot Coulomb interaction. Figure 1 shows the time-
dependent evolution of the current I flowing through the TQD
system. It is clear that the current first increases from zero
and eventually evolves into a constant. This depicts how the
initially unsteady TQD system approaches the stationary state.
For the small � = 0.25, there appear some tiny oscillations
in the I ∼ t curve at small t , which can be attributed to
the electron tunneling among those three QDs. However, this
kind of oscillation is completely suppressed when � becomes
sufficiently large. It is because a larger � will make the system
evolve into a stationary state more quickly, thus making the
interdot-coupling-induced oscillation invisible. Also we can
find that the value of the current at any time t increases with
increasing �. This is reasonable since larger � will make
it much easier for the electron to tunnel between the leads
and the QDs. We believe these phenomena can be studied
experimentally4.

4 According to the reference by Lent et al (see [27]) we consider a TQD
system fabricated in a semiconductor with m∗ = 0.067m0 and the dielectric
constant is ε = 10. The interdot coupling can be taken to be�0 ∼ 0.024 MeV
and the frequency of the electron oscillating between two QDs is of the order
of �0/2π h̄ ∼ 109 Hz. In the case of � = 1.0�0, the current can reach
the steady state in 10–100 ps. Obviously the phenomena studied here can be
readily observed by using current experiment technologies.

3
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Figure 2. Time-dependent occupation probabilities of the electron
with the interdot coupling �0 = 1.0 in the case of zero magnetic
field. The occupation probabilities with only one QD occupied
(σ11, σ22, σ33) or empty (σ1̄1̄, σ2̄2̄, σ3̄3̄) are shown in (a) and (b),
respectively. σ11 and σ1̄1̄, σ22 and σ2̄2̄, σ33 and σ3̄3̄ are denoted by the
solid, dashed, and dotted curves, respectively. The time t is in units
of 1/�0.

In order to get an intuitive understanding on what induces
the current variation, it is very necessary to conduct an in-
depth investigation into the density matrices. So, we show in
figure 2 the corresponding electron-occupation probabilities as
a function of time t for different �. For the weak coupling
� = 0.25, the curves of σαα and σᾱᾱ (α = 1, 2, 3) show
transient oscillations at small t , which demonstrates that the
electrons are able to tunnel among those three QDs. After a
long enough time all of the probabilities become independent
of time, indicating that the TQD system has evolved into a
steady state. It is this kind of oscillating probability that
leads to the current variations. Furthermore, we can see as �
increases, the probabilities will evolve into steady states more
quickly. Microscopically this demonstrates that the system will
evolve into a stationary state after a sufficiently long time.

Then we examine the details of the time-dependent
probabilities. From the curves of � = 0.25 in the figure 2(a),
we can find that the σ11 curve overlaps with the σ22 one at
small t → 0. As the time goes on, however, σ22 is inclined
to become smaller than σ11. This can be understood according
to an intuitive tunneling picture. Firstly, the electrons in the
left lead can tunnel simultaneously into both QD1 and QD2
at the same speed. As a result σ11 and σ22 are kept equal in
the initial time. Then both the electrons in QD1 and those
in QD2 can flow into the right lead by passing through the
QD3 channel. However, the electrons in QD2 have one more
channel to use to enter the right lead. Therefore, the probability
σ22 will decrease more quickly than σ11, causing σ22 < σ11

even in the stationary state. On the other hand, it is clear that
σ33 is smaller than σ11 and σ22 in the initial stage. This is
because the electrons incident from the left lead will first enter
QD1 and QD2, and then enter QD3. Moreover, the specific
values of the probabilities in the stationary state will change a
lot for different �. Actually, the variations of these stationary

Figure 3. Variation of the stationary current I as a function of the
reduced magnetic flux φ with U = 0, � = 1, and�0 = 1 for
different reduced magnetic flux ratios (a) 1:1:1, (b) 1:1:2, (c) 1:1:3,
(d) 1:2:1, (e) 1:2:2, and (f) 1:2:3, respectively.

values corresponding to different � are determined only by the
transient process in the unstable stage since in the stationary
state the number of the input electrons from the left lead is
equal to that out of the central three QDs.

3.2. Magnetic field effect

In the following we will focus on the influences of the magnetic
field on the stationary transport through the TQD in two cases:
U = 0 and ∞. The reduced magnetic fluxes penetrating three
subrings are denoted by φL, φM, and φR, respectively5. Their
effects can be taken into account by introducing some phases
θ12, θ23, θL1, θ2L, θ13, θR2, and θ3R. For convenience, we assume
θ12 = θ23 = 0, θL1 + θ2L = φL, θ13 = φM, θR2 + θ3R = φR

with the total reduced magnetic flux φ = φL + φM + φR.
Firstly we examine how the distribution (the flux ratio γ ≡

φL:φM:φR) of the magnetic field in the three subrings affects
the stationary transport, especially the period of the current
oscillation. In figure 3 we plot the variation of the stationary
current as a function of the total reduced magnetic flux φ

for the different reduced magnetic flux ratios γ . We can see
from figure 3(a) that the stationary current exhibits a periodic
oscillation with a period of 6π when γ = 1:1:1. Obviously this
is sharply different from the usual single-ring AB oscillation
with a period of 2π [6]. Furthermore, one can find that the
oscillation period varies with γ by comparing the curves in
figures 3(a)–(f). The currents oscillate with the periods of
8π , 10π , 8π , 10π , and 12π in response to different reduced
magnetic flux ratios γ = 1:1:2, 1:1:3, 1:2:1, 1:2:2, and 1:2:3,
respectively. Thus, we can conclude that the stationary current
shows the oscillation with a period of 2πξ when the ratio γ
of the reduced magnetic fluxes in the three subrings is equal to
1:n1:n2 (here we introduce ξ = 1+n1+n2). For a general case

5 The reduced magnetic fluxes φL,M,R = 2π�L,M,R/�0 with �0 = h/e
being the magnetic flux quanta.

4
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(e)

(d)

(c)

(b)

(a)

Figure 4. Variation of the stationary current as a function of the
reduced magnetic flux for different interdot couplings
�12 = �23 = �. Here, the energy level bandwidth is � = 1.0, the
interdot coupling �13 is selected to be 1.0 and the reduced magnetic
flux ratio is γ = 1:1:1. For clarity, the curves of (a) � = 0.0,
(b) � = 0.5, (c) � = 0.65, (d) � = 1.0, (e) � = 2.0 are shifted
upward by 0.0, 0.1, 0.2, 0.3, 0.4, respectively.

the ratio of the magnetic fluxes may be γ = 1:l1:l2 with l1 and
l2 being noninteger. It seems difficult to infer the oscillation
period based on the above results of γ = 1:n1:n2. However, γ
just determines the partition of the magnetic fluxes penetrating
three subrings in nature. Therefore, we can convert an arbitrary
ratio γ = 1:l1:l2 into a new form of n1:n2:n3 with integer n1,
n2, and n3. Thus the oscillation period can be calculated in the
usual way: 2π(n1 + n2 + n3). For example, γ = 1:0.2:1.2 can
be transformed into 5:1:6, which clearly depicts the partition
of the magnetic fluxes �L:�M:�R = 5:1:6. Therefore, the
oscillation period should be 2π(5 + 1 + 6) = 24π . Thus we
have generalized our study into the general case with arbitrary
magnetic flux ratio γ .

As is well known, the current flowing through the single-
ring setup oscillates with a period of 2π . Obviously, the
oscillation behaviors of the current through the three-subring
system studied here are completely different. Therefore, we
utilize our TQD system to explore the transition process from
the 2π -period current oscillation of the single AB ring to
the 6π -period oscillation of the triple AB ring. So we show
in figure 4 the currents for the different interdot couplings
�12 = �23 = � at long enough time t = 100 with
γ = 1:1:1. Clearly, in the case of � = 0 the three-
subring system becomes a single-ring setup. As expected,
the stationary current exhibits a 2π -period oscillation. When
the interdot coupling � turns on, three subrings are formed
immediately and the feature of the corresponding current
changes substantially. The oscillation period changes from
2π to 6π , which results from the geometry variation from
the single-ring to the three-subring system. When � increases
further, the trough at about φ = 1.5π will be inclined to vanish
and eventually evolves into a peak. In the meantime, the size of
this peak submerges the two peaks localized at φ = 0.5π and
2.5π . However, the peak at φ = 4.5π continuously increases
with the increasing of � to form the largest peak, as shown in
the curve of � = 2.0. These verify that the specific oscillation

Figure 5. Variation of the stationary current as a function of the
reduced magnetic flux φ in the case of U = ∞, � = 1.0, and
�0 = 1.0 for different reduced magnetic flux ratios (a) 1:1:1,
(b) 1:1:2, (c) 1:1:3, (d) 1:2:1, (e) 1:2:2, and (f) 1:2:3, respectively.

behavior is closely dependent on the interdot couplings and
the 2π -to-6π transition is determined only by the geometric
structure.

Finally, we discuss the influences of the interdot Coulomb
interaction U on the period of the current oscillation. Figure 5
shows the stationary current for the different flux ratios γ when
U = ∞. In comparison with the U = 0 case shown in figure 3,
extremely obvious changes have happened in the oscillation
patterns. However, the oscillation periods are always kept
invariant for any γ . That is to say, even in the case of U = ∞
the current still oscillates with a period of 2π(1+n1+n2)when
the reduced magnetic flux ratio is γ = 1:n1:n2. This verifies
that the interdot Coulomb interaction does change the specific
oscillation of the current, but does not affect the oscillation
period induced by the threaded magnetic field.

3.3. Analytic discussion and extension

To analytically explain the period of the current oscillation,
we can list the seven main channels (1) L → QD2 → R,
(2) L → QD2 → QD3 → R, (3) L → QD1 → QD2 → R,
(4) L → QD1 → QD3 → R, (5) L → QD1 → QD2 →
QD3 → R, (6) L → QD1 → QD3 → QD2 → R, and
(7) L → QD2 → QD1 → QD3 → R for the electron
to transport from the left lead to the right one. The electron
flowing through these channels can be described as �α =
Aα exp(iPα) with α = 1, 2, · · · , 7, respectively. To be specific,
we have P1 = θ2L + θR2, P2 = θ2L + θ32 + θR3, P3 =
θ1L+θ21+θR2, P4 = θ1L+θ31+θR3, P5 = θ1L+θ21+θ32+θR3,
P6 = θ1L + θ31 + θ23 + θR2, and P7 = θ2L + θ12 + θ31 + θR3.
So, the total wavefunction can be written as

�T =
7∑

α=1

�α. (6)
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Then we can obtain the probability of finding the electron in
the right lead

|�|2 =
7∑

α=1

|�α|2 + 2
7∑

α,β=1

|�α||�β | cos Pαβ , (7)

where the first term in the right-hand side of equation (7)
denotes the direct transport through the seven channels, and the
second one is the coherent component among those channels.
Pαβ = Pα−Pβ represents the phase difference between the αth
channel and the βth one. When the reduced magnetic fluxes
threading into the three subrings are selected to be φL = φ/ξ ,
φM = n1φ/ξ , and φR = n2φ/ξ , the phase differences can be
explicitly expressed as P14 = P26 = P37 = φ, P13 = P25 =
P47 = φ/ξ , P27 = P36 = P45 = n1φ/ξ , P12 = P35 = P46 =
n2φ/ξ , P16 = P24 = P57 = (1 + n1)φ/ξ , P15 = P23 = P67 =
(1+n2)φ/ξ , and P17 = P34 = P56 = (n1+n2)φ/ξ . Therefore,
the corresponding oscillation periods of the functions cos Pαβ
in equation (7) certainly equal 2π , 2ξπ , 2ξπ/n1, 2ξπ/n2,
2ξπ/(1 + n1), 2ξπ/(1 + n2), and 2ξπ/(n1 + n2), respectively.
Thus one can readily find that the total period of |�|2 should
be 2ξπ = 2π(1 + n1 + n2). Analytically, we verified that the
current flowing through a three-subring setup should oscillate
with a period of 2π(1 + n1 + n2), which is independent of the
number of QDs in the setup, the interdot couplings, the interdot
Coulomb interaction, and so on.

Together with the 2π -period AB oscillation in the one-ring
setup, as well as the 2π(1 + n1)-period AB oscillation of the
two-subring setup, we can extend the result 2π(1+n1 +n2) of
the three-subring setup into an N-subring system. The period
of the magnetic-field-induced AB current oscillation should be
2π(1 + n1 + n2 + · · · + nN−1) when the ratio of the magnetic
flux threading into the N subrings is 1:n1:n2: · · · :nN−1. We
believe this result should be universal for the mesoscopic setup,
which is helpful in understanding the coherent transport in such
many-subring systems.

4. Conclusion

In conclusion, we have firstly derived the modified rate
equations of the TQD system including three subrings. It is
shown that the current and the probabilities of the electrons
occupying the QDs exhibit transient oscillations in the initial
stage and become constants eventually, indicating the system
has evolved into a stationary state. Moreover, we find that
the current shows 2π(1 + n1 + n2) period oscillation with
the increase of the magnetic field, when the reduced magnetic
fluxes threaded through the three subrings are φ, n1φ, and n2φ.
It is also verified that the oscillation period is not influenced
by the interdot Coulomb interaction. Based on an analytical
explanation, we extend our results to the N-subring system,
which can be viewed as a useful reference in understanding
N-subring transport properties.

Acknowledgments

This work is financially supported by the NSFC under grant
Nos 10547105 and 10604005, and the Excellent Young
Scholars Research Fund of Beijing Institute of Technology
(No. 2006Y0713).

References
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